P(x)=100/0.02x^2+1

Simple and best practice solution for P(x)=100/0.02x^2+1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for P(x)=100/0.02x^2+1 equation:



(P)=100/0.02P^2+1
We move all terms to the left:
(P)-(100/0.02P^2+1)=0
Domain of the equation: 0.02P^2+1)!=0
P∈R
We get rid of parentheses
P-100/0.02P^2-1=0
We multiply all the terms by the denominator
P*0.02P^2-1*0.02P^2-100=0
Wy multiply elements
0P^2+0P-100=0
We add all the numbers together, and all the variables
P^2+P-100=0
a = 1; b = 1; c = -100;
Δ = b2-4ac
Δ = 12-4·1·(-100)
Δ = 401
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$P_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$P_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$P_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{401}}{2*1}=\frac{-1-\sqrt{401}}{2} $
$P_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{401}}{2*1}=\frac{-1+\sqrt{401}}{2} $

See similar equations:

| 2/7(4x-`18)=12 | | 1/2x+(x-35)+(x-40)+x=360 | | h()=h(3)+5h(2) | | 1x+11=5(x-1) | | 9(2+3x)+2x=45 | | x^2+18x+27=8x+3 | | -12+8b=8b-6 | | -39v+40=9v-3 | | 3.2d-17.88=-d=30 | | 6x-1=19+2x | | -2(n+3)+5=6 | | -x-2=1/7x-10 | | h×h÷2=162 | | 18.4y=16.4y+20 | | –56=–4d–20 | | -10=-14+14n | | 1.15(2p+1.5)=4.25 | | (100x-0.5x^2)-(60x+300)=15000 | | 10-5x=-17 | | 0=-16t^2+125t+20 | | x(4.8)=6(5)-6 | | 1.15(2p+1.5)=4.35 | | A+31/2s+10=64 | | 24+5/6x=50 | | -6-6z=9z+10 | | −6=z4−3 | | -3+3=15+6x | | -94=8(-9k-4)-(-6k-4) | | (x+8)x=240 | | 5x-3x+X+7=2X+I+X+x | | 120=4/3x | | 5n-7=23(n=6) |

Equations solver categories